metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Propylquinolinium triiodidocuprate(I)

Yun Jie Wang,^{a,b} Hao Hong Li,^{a,b} Zhi Rong Chen,^{a,b}* Chang Cang Huang^a and Ji Bo Liu^a

^aDepartment of Chemistry, University of Fuzhou, Fuzhou 350002, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou 350002, People's Republic of China Correspondence e-mail: zrchen@fzu.edu.cn

Received 8 September 2007; accepted 7 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.043; wR factor = 0.149; data-to-parameter ratio = 22.6.

In the title compound, $(C_{12}H_{14}N)_2[CuI_3]$, the asymmetric unit contains two *N*-propylquinolinium cations which lie on opposite sides of the CuI₃²⁻ anion. In the anion, Cu–I bond distances lie in the range 2.5161 (13)–2.5529 (12) Å. All of the atoms in the anion are essentially coplanar, with an r.m.s. deviation from the $[CuI_3]^{2-}$ mean plane of 0.0001 Å. In the crystal structure, an extensive network of C–H···I hydrogen bonds links the cations and anions into an extended threedimensional network, with the cations further aggregated through π – π stacking interactions [centroid–centroid distances 3.48 (7) and 3.43 (5) Å].

Related literature

For information on C-H···I hydrogen bonds, see Horn *et al.* (2003), and on π - π stacking, see Robin & Fromm (2006). For related literature, see: Huang & Xie (1988).

Experimental

Crystal data

$(C_{12}H_{14}N)_2[CuI_3]$	c = 16.175 (3) Å
$M_r = 788.73$	$\alpha = 81.27 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 76.03 \ (3)^{\circ}$
a = 9.4373 (19) Å	$\gamma = 72.82 \ (3)^{\circ}$
b = 9.5500 (19) Å	$V = 1346.4 (5) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 4.26 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID Imaging
Plate diffractometer
Absorption correction: multi-scan
(TEXRAY; Molecular Structure
Corporation, 1999)
$T_{\min} = 0.443, \ T_{\max} = 0.506$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 273 parameters $wR(F^2) = 0.149$ H-atom parameters constrainedS = 0.87 $\Delta \rho_{max} = 0.69$ e Å $^{-3}$ 6176 reflections $\Delta \rho_{min} = -1.16$ e Å $^{-3}$

T = 293 (2) K

 $R_{\rm int}=0.052$

 $0.20 \times 0.18 \times 0.16 \text{ mm}$

12812 measured reflections 6176 independent reflections

4121 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C10 H104 I2 ⁱ	0.07	2.00	4.046 (6)	167
$C10-H10A\cdots H2$ $C13-H13\cdots H3^{ii}$	0.97	3.09	3.871 (6)	150
C18 $-$ H18 $\cdot \cdot \cdot$ I1 ⁱⁱⁱ C2 $-$ H2 $\cdot \cdot \cdot$ I3 ^{iv}	0.93	3.08 3.16	3.986 (6) 3.852 (6)	165 133
$C_2 = H_2 \cdots I_3$	0.93	3.10	3.852 (6)	133

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y, -z + 1; (iii) x - 1, y + 1, z; (iv) x + 1, y, z.

Data collection: *TEXRAY* (Molecular Structure Corporation, 1999); cell refinement: *TEXRAY*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of Fujian Province of the People's Republic of China (No. E0710008), the Special Foundation for Young Scientists of Fuzhou University (XRC0644) and the Science & Technology Promotion Foundation of Fuzhou University (XJJ-0605).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2354).

References

Horn, C. J., Blake, A. J., Champness, N. R., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2003). *Chem Commun.* pp. 312–313.

Huang, S. & Xie, R. G. (1988). Preparation Manual of Organic Synthesis Reagents, pp. 3498–3502. Chen Du: Sichuan University Press.

- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Molecular Structure Corporation (1999). *TEXRAY* (Version 1.10) and *TEXSAN* (Version 1.10). MSC, The Woodlands, Texas, USA.
- Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2736 [doi:10.1107/S1600536807049136]

1-Propylquinolinium triiodidocuprate(I)

Y. J. Wang, H. H. Li, Z. R. Chen, C. C. Huang and J. B. Liu

Comment

In the title compound, (I) Fig. 1, the asymmetric unit contains two N-propylquinolinium cations which lie on opposite sides of the CuI₃²⁻ anion. In the anion cluster, Cu—I bond distances lie in the range from 2.5161 (13) Å to 2.5529 (12)Å and the I1—Cu—I2, I2—Cu—I3 and I1—Cu—I3 bond angles are 124.29°, 117.02° and 118.69°, respectively. All of the atoms in the anion are essentially coplanar with an r.m.s. deviation from the [CuI₃]²⁻ mean plane of 0.0001|%A. The inorganic and organic components are linked via C—H···I hydrogen bonds to give a three-dimensional network, Table 1. The cations are further aggregated through π - π stacking interactions with centroid to centroid distances of 3.48 (7)Å and 3.43 (5)Å respectively between the quinolinium rings, Fig 2.

Experimental

1-propylquinolinium iodide was prepared as reported in literature (Huang *et al.*, 1988). 1-propylquinolinium iodide (0.30 g, 1.0 mmol) and CuI (0.19 g, 1 mmol) were dissolved in 15 mL DMF and stirred for 20 min to give a clear red solution which was filtered and allowed to evaporate at room temperature. Red block-like crystals formed over one, week in 65% yield. (0.32 g). Calcd. For $C_{24}H_{28}CuI_{3}N_{2}$ (788.73): C, 36.40 H, 3.52 N, 3.53% Found: C, 36.51 H, 3.55 N, 3.55%.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms, respectively, and with $U_{iso}(H) = 1.2Ueq(C)$ for aromatic and methylene H atoms, $U_{iso}(H) = 1.5Ueq(C)$ for methyl H atoms.

Figures

Fig. 1. The structure of (I) showing the atom numbering with ellipsoids drawn at the 50% probability level.

Fig. 2. Crystal packing for (I) with hydrogen bonds drawn as dashed lines.

1-Propylquinolinium triiodidocuprate(I)

Crystal data	
(C ₁₂ H ₁₄ N) ₂ [CuI ₃]	Z = 2
$M_r = 788.73$	$F_{000} = 748.0$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.945 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.4373 (19) Å	Cell parameters from 18 reflections
<i>b</i> = 9.5500 (19) Å	$\theta = 12 - 15^{\circ}$
c = 16.175 (3) Å	$\mu = 4.26 \text{ mm}^{-1}$
$\alpha = 81.27 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 76.03 \ (3)^{\circ}$	Block, red
$\gamma = 72.82 \ (3)^{\circ}$	$0.20\times0.18\times0.16~mm$
$V = 1346.4 (5) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer	6176 independent reflections
Radiation source: rotor target	4121 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
T = 293(2) K	$\theta_{max} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999)	$h = -12 \rightarrow 12$
$T_{\min} = 0.443, T_{\max} = 0.506$	$k = -12 \rightarrow 12$
12812 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_0^2) + (0.0369P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.149$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.87	$\Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$
6176 reflections	$\Delta \rho_{\rm min} = -1.16 \text{ e } \text{\AA}^{-3}$
273 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0010 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.55819 (5)	-0.00607 (5)	0.24539 (3)	0.05558 (16)
I2	0.40382 (5)	0.46869 (5)	0.18593 (3)	0.05692 (16)
13	0.09917 (5)	0.25384 (6)	0.36757 (3)	0.06252 (17)
Cu1	0.35344 (9)	0.23210 (9)	0.26816 (5)	0.0511 (2)
N2	-0.2782 (5)	0.2353 (6)	0.5522 (3)	0.0471 (12)
N1	0.8453 (5)	0.2573 (6)	0.0483 (3)	0.0459 (11)
C1	0.8245 (8)	0.2374 (8)	0.1316 (5)	0.0577 (17)
H1	0.7371	0.2131	0.1627	0.069*
C2	0.9279 (9)	0.2515 (10)	0.1745 (5)	0.067 (2)
H2	0.9104	0.2371	0.2338	0.081*
C3	1.0563 (9)	0.2868 (9)	0.1292 (5)	0.0648 (19)
Н3	1.1266	0.2971	0.1578	0.078*
C4	1.0827 (7)	0.3074 (7)	0.0405 (5)	0.0508 (15)
C5	1.2143 (8)	0.3423 (8)	-0.0111 (6)	0.0625 (19)
Н5	1.2860	0.3564	0.0150	0.075*
C6	1.2376 (9)	0.3554 (9)	-0.0963 (6)	0.073 (2)
H6	1.3282	0.3712	-0.1287	0.087*
C7	1.1263 (9)	0.3454 (9)	-0.1371 (5)	0.067 (2)
H7	1.1419	0.3597	-0.1964	0.080*
C8	0.9949 (8)	0.3150 (8)	-0.0912 (5)	0.0538 (16)
H8	0.9211	0.3096	-0.1188	0.065*
C9	0.9736 (6)	0.2920 (6)	-0.0016 (4)	0.0422 (13)
C10	0.7275 (7)	0.2378 (7)	0.0078 (4)	0.0498 (15)
H10A	0.7120	0.3132	-0.0391	0.060*
H10B	0.6325	0.2504	0.0494	0.060*
C11	0.7708 (8)	0.0875 (8)	-0.0257 (5)	0.0581 (17)
H11A	0.8718	0.0690	-0.0617	0.070*
H11B	0.7723	0.0122	0.0219	0.070*
C12	0.6596 (10)	0.0795 (10)	-0.0766 (7)	0.080 (3)
H12A	0.6887	-0.0160	-0.0973	0.119*
H12B	0.6591	0.1532	-0.1241	0.119*
H12C	0.5600	0.0963	-0.0407	0.119*
C13	-0.3068 (8)	0.1201 (8)	0.5292 (5)	0.0596 (18)
H13	-0.2979	0.0339	0.5655	0.071*
C14	-0.3501 (9)	0.1256 (9)	0.4519 (6)	0.069 (2)
H14	-0.3675	0.0432	0.4364	0.083*
C15	-0.3662 (8)	0.2494 (9)	0.4005 (5)	0.0636 (19)
H15	-0.3962	0.2535	0.3493	0.076*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	-0.3382 (7)	0.3746 (8)	0.4227 (4)	0.0539 (16)
C17	-0.3528 (8)	0.5081 (11)	0.3699 (5)	0.070 (2)
H17	-0.3844	0.5166	0.3188	0.084*
C18	-0.3207 (9)	0.6242 (9)	0.3934 (6)	0.071 (2)
H18	-0.3310	0.7119	0.3585	0.085*
C19	-0.2729 (9)	0.6120 (9)	0.4690 (6)	0.070 (2)
H19	-0.2492	0.6920	0.4832	0.084*
C20	-0.2590 (7)	0.4888 (8)	0.5234 (5)	0.0540 (16)
H20	-0.2290	0.4847	0.5746	0.065*
C21	-0.2914 (6)	0.3660 (7)	0.5004 (4)	0.0405 (12)
C22	-0.2312 (8)	0.2202 (9)	0.6344 (4)	0.0589 (18)
H22A	-0.2700	0.1451	0.6725	0.071*
H22B	-0.2744	0.3124	0.6607	0.071*
C23	-0.0588 (8)	0.1787 (10)	0.6223 (5)	0.068 (2)
H23A	-0.0150	0.0869	0.5955	0.082*
H23B	-0.0196	0.2543	0.5850	0.082*
C24	-0.0146 (11)	0.1621 (15)	0.7068 (7)	0.104 (4)
H24A	0.0939	0.1359	0.6984	0.157*
H24B	-0.0524	0.0863	0.7433	0.157*
H24C	-0.0569	0.2534	0.7328	0.157*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0505 (3)	0.0452 (3)	0.0663 (3)	-0.01132 (19)	-0.0080 (2)	-0.0006 (2)
I2	0.0560 (3)	0.0485 (3)	0.0628 (3)	-0.0133 (2)	-0.0149 (2)	0.0082 (2)
13	0.0488 (3)	0.0813 (4)	0.0485 (3)	-0.0122 (2)	-0.00168 (19)	-0.0029 (2)
Cu1	0.0473 (4)	0.0574 (5)	0.0480 (5)	-0.0128 (4)	-0.0118 (3)	-0.0015 (4)
N2	0.037 (2)	0.055 (3)	0.046 (3)	-0.012 (2)	-0.005 (2)	-0.001 (2)
N1	0.039 (2)	0.051 (3)	0.046 (3)	-0.012 (2)	-0.008 (2)	-0.003 (2)
C1	0.061 (4)	0.064 (5)	0.047 (4)	-0.020 (3)	-0.009 (3)	0.004 (3)
C2	0.075 (5)	0.088 (6)	0.040 (4)	-0.027 (4)	-0.016 (3)	0.010 (4)
C3	0.071 (5)	0.066 (5)	0.065 (5)	-0.018 (4)	-0.033 (4)	0.001 (4)
C4	0.051 (3)	0.049 (4)	0.055 (4)	-0.013 (3)	-0.016 (3)	-0.006(3)
C5	0.043 (3)	0.061 (5)	0.086 (6)	-0.018 (3)	-0.010 (3)	-0.011 (4)
C6	0.056 (4)	0.068 (5)	0.089 (7)	-0.028 (4)	0.016 (4)	-0.018 (4)
C7	0.076 (5)	0.070 (5)	0.047 (4)	-0.025 (4)	0.011 (4)	-0.010 (4)
C8	0.055 (4)	0.055 (4)	0.052 (4)	-0.020 (3)	-0.003 (3)	-0.007 (3)
C9	0.043 (3)	0.035 (3)	0.046 (4)	-0.007 (2)	-0.008 (2)	-0.006(3)
C10	0.040 (3)	0.057 (4)	0.054 (4)	-0.014 (3)	-0.015 (3)	0.003 (3)
C11	0.057 (4)	0.050 (4)	0.072 (5)	-0.014 (3)	-0.020 (3)	-0.010 (4)
C12	0.074 (5)	0.068 (5)	0.108 (8)	-0.022 (4)	-0.030 (5)	-0.016 (5)
C13	0.055 (4)	0.048 (4)	0.071 (5)	-0.013 (3)	-0.011 (3)	0.006 (3)
C14	0.066 (5)	0.068 (5)	0.087 (6)	-0.023 (4)	-0.028 (4)	-0.018 (5)
C15	0.055 (4)	0.082 (6)	0.058 (5)	-0.017 (4)	-0.013 (3)	-0.021 (4)
C16	0.036 (3)	0.076 (5)	0.045 (4)	-0.013 (3)	-0.004 (2)	-0.006(3)
C17	0.042 (3)	0.103 (7)	0.052 (5)	-0.014 (4)	-0.011 (3)	0.019 (4)
C18	0.056 (4)	0.064 (5)	0.076 (6)	-0.010 (4)	-0.008 (4)	0.025 (4)

C19	0 053 (4)	0 053 (4)	0 094 (7)	-0.017(3)	-0.001(4)	0.003 (4)
C20	0.047 (3)	0.055 (4)	0.060 (4)	-0.014(3)	-0.006(3)	-0.011(3)
C21	0.032 (3)	0.049 (3)	0.039 (3)	-0.014(2)	-0.003(2)	-0.001(3)
C22	0.063 (4)	0.084 (5)	0.032 (3)	-0.024(4)	-0.014(3)	0.001 (3)
C23	0.058 (4)	0.085 (6)	0.062 (5)	-0.016 (4)	-0.020(3)	-0.001 (4)
C24	0.078 (6)	0.161 (11)	0.074 (7)	-0.018 (6)	-0.040 (5)	0.003 (7)
		()				
Geometric param	neters (Å, °)					
I1—Cu1		2.5213 (14)	Cl	1—H11B	0.9	9700
I2—Cu1		2.5529 (12)	Cl	2—H12A	0.9	9600
I3—Cu1		2.5161 (13)	Cl	2—H12B	0.9	9600
N2—C13		1.331 (9)	Cl	2—H12C	0.9	9600
N2-C21		1.385 (8)	Cl	3—C14	1.3	396 (11)
N2—C22		1.474 (8)	Cl	3—H13	0.9	9300
N1-C1		1.306 (9)	Cl	4—C15	1.3	330 (12)
N1—C9		1.382 (8)	Cl	4—H14	0.9	9300
N1-C10		1.487 (7)	Cl	5—C16	1.4	411 (10)
C1—C2		1.373 (10)	Cl	5—H15	0.9	9300
C1—H1		0.9300	Cl	6—C21	1.4	413 (9)
C2—C3		1.362 (11)	Cl	6—C17	1.4	414 (11)
С2—Н2		0.9300	Cl	7—C18	1.3	358 (12)
C3—C4		1.390 (11)	Cl	7—H17	0.9	9300
С3—Н3		0.9300	Cl	8—C19	1.3	381 (12)
С4—С9		1.414 (8)	C1	8—H18	0.9	9300
C4—C5		1.418 (10)	Cl	9—C20	1.3	351 (11)
C5—C6		1.333 (13)	C1	9—H19	0.9	9300
С5—Н5		0.9300	C2	20—C21	1.4	416 (9)
С6—С7		1.400 (12)	C2	20—H20	0.9	9300
С6—Н6		0.9300	C2	22—C23	1.:	527 (10)
С7—С8		1.370 (10)	C2	22—H22A	0.9	9700
С7—Н7		0.9300	C2	2—H22B	0.9	9700
С8—С9		1.407 (9)	C2	23—C24	1.4	496 (11)
С8—Н8		0.9300	C2	23—H23A	0.9	9700
C10-C11		1.518 (9)	C2	23—H23B	0.9	9700
C10—H10A		0.9700	C2	24—H24A	0.9	9600
C10—H10B		0.9700	C2	24—H24B	0.9	9600
C11—C12		1.506 (10)	C2	24—H24C	0.9	9600
C11—H11A		0.9700				
I3—Cu1—I1		124.29 (5)	HI	2A—C12—H12B	10	9.5
I3—Cu1—I2		117.02 (5)	C1	1—C12—H12C	10	9.5
I1—Cu1—I2		118.69 (4)	H1	2A—C12—H12C	10	9.5
C13—N2—C21		121.1 (6)	H1	2B—C12—H12C	10	9.5
C13—N2—C22		118.3 (6)	N2	2—C13—C14	12	1.5 (7)
C21—N2—C22		120.6 (6)	N2	2—С13—Н13	11	9.3
C1—N1—C9		121.8 (5)	C1	4—C13—H13	11	9.3
C1—N1—C10		117.8 (5)	C1	5—C14—C13	11	9.6 (7)
C9—N1—C10		120.4 (5)	C1	5—C14—H14	12	0.2
N1—C1—C2		121.9 (6)	C1	3—C14—H14	12	0.2

N1—C1—H1	119.1	C14—C15—C16	120.8 (7)
C2—C1—H1	119.1	C14—C15—H15	119.6
C3—C2—C1	119.3 (7)	C16—C15—H15	119.6
С3—С2—Н2	120.3	C15—C16—C21	118.9 (7)
C1—C2—H2	120.3	C15—C16—C17	122.8 (7)
C2—C3—C4	120.3 (6)	C21—C16—C17	118.3 (7)
С2—С3—Н3	119.9	C18—C17—C16	120.4 (7)
С4—С3—Н3	119.9	C18—C17—H17	119.8
C3—C4—C9	118.8 (6)	С16—С17—Н17	119.8
C3—C4—C5	123.6 (6)	C17—C18—C19	120.1 (7)
C9—C4—C5	117.6 (7)	C17—C18—H18	120.0
C6—C5—C4	121.5 (7)	C19—C18—H18	120.0
С6—С5—Н5	119.2	C20-C19-C18	122.8 (8)
С4—С5—Н5	119.2	С20—С19—Н19	118.6
C5—C6—C7	120.3 (7)	С18—С19—Н19	118.6
С5—С6—Н6	119.8	C19—C20—C21	118.3 (7)
С7—С6—Н6	119.8	C19—C20—H20	120.8
C8—C7—C6	121.2 (8)	C21—C20—H20	120.8
С8—С7—Н7	119.4	N2—C21—C16	118.2 (6)
С6—С7—Н7	119.4	N2—C21—C20	121.8 (6)
С7—С8—С9	118.8 (7)	C16—C21—C20	120.1 (6)
С7—С8—Н8	120.6	N2—C22—C23	111.4 (6)
С9—С8—Н8	120.6	N2—C22—H22A	109.3
N1—C9—C8	121.6 (5)	C23—C22—H22A	109.3
N1—C9—C4	117.9 (6)	N2—C22—H22B	109.3
C8—C9—C4	120.5 (6)	С23—С22—Н22В	109.3
N1—C10—C11	112.3 (5)	H22A—C22—H22B	108.0
N1—C10—H10A	109.2	C24—C23—C22	110.2 (7)
C11—C10—H10A	109.2	C24—C23—H23A	109.6
N1—C10—H10B	109.2	С22—С23—Н23А	109.6
C11—C10—H10B	109.2	С24—С23—Н23В	109.6
H10A-C10-H10B	107.9	С22—С23—Н23В	109.6
C12-C11-C10	110.6 (6)	H23A—C23—H23B	108.1
C12-C11-H11A	109.5	C23—C24—H24A	109.5
C10-C11-H11A	109.5	C23—C24—H24B	109.5
C12—C11—H11B	109.5	H24A—C24—H24B	109.5
C10—C11—H11B	109.5	C23—C24—H24C	109.5
H11A—C11—H11B	108.1	H24A—C24—H24C	109.5
C11—C12—H12A	109.5	H24B—C24—H24C	109.5
C11—C12—H12B	109.5		

	Hydrogen-	bond	geometry	(Å,	°)
--	-----------	------	----------	-----	----

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C10—H10A…I2 ⁱ	0.97	3.09	4.046 (6)	167
C13—H13···I3 ⁱⁱ	0.93	3.04	3.871 (6)	150
C18—H18…I1 ⁱⁱⁱ	0.93	3.08	3.986 (6)	165
C2—H2···I3 ^{iv}	0.93	3.16	3.852 (6)	133

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*, -*z*+1; (iii) *x*-1, *y*+1, *z*; (iv) *x*+1, *y*, *z*.

Fig. 1

